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The internal stress-strain state (SSS) of a plate under coupled bending and extension--e.ompression-shear is determined. It is 
proved that the two-dimensional equilibrium equations for the materials of layers with anisotropy of general form are elliptic, 
and natural boundary conditions are derived. The displacements are expressed in terms of functions of a complex variable, which 
make it possible to reduce the basic boundary-value problems to a determination of these functions fxom the values of the real 
part of linear combinatk)ns of the functions on the lateral surface of the plate. Conditions are established for the functions to 
be sin#e-valued; these conditions are related to the self-balance of the boundary load. Exact solutions of the boundary-value 
problems are presented for a finite eUipse, including the case where polynomial loads are applied to the plate faces. Solutions 
are presented for a plate with an elliptic cut-out, including the case in which the boundary loads are not self-balanced. The singular 
problem of a plate with a loaded finite cut through the material or a rigid insertion is also considered. Exact solutions are 
constructed, using Sehw.'u-tz's formula, for simply-connected regions that can be mapped conformally onto a disk. The method 
proposed is a new variation of the Kolosov-Muslthelishvili-Lekhnitskii method for non-classical laminated plates and has the 
same advantages and disadvantages. The main difference compared with the standard two-dimensional problem or bending 
problem is the higher dimension. 

1. Consider a plate consisting of N perfectly bonded layers whose materials possess rectilinear anisotropy 
2 of a general type. Sappose that thejth layer occupies a region f~[z/, zj+l], x ~ t~ C_ R (where x = i~xa, 

x3 -= z are Cartesian coordinates). Denote the stiffness matrix and layer thickness by G/and h / =  z/+l 
- z/, respectively. We shall assume that the ratio of the plate half-thickness h to the characteristic 
longitudinal dimension L of the strain pattern is a small parameter e, and that the ratios of the geometric 
and elastic constants of the layers are incommensurate with e. The normal and tangential loads on the 
lateral surfaces of the plate are determined by equalities 

= Z a: 
O = = O * ( X ) ,  O a z = l ~ - t X ~ ( x ) ;  Zl,N+l (1.1) 

In [1-3] we established asymptotically exact (e ~ 0) two-dimensional equations describing the SSS 
of a plate in which the layers are asymmetrically stacked by thickness. The strains and stresses were 
expanded in asympl~otic series in powers of e; the principal terms for the longitudinal displacements U 
and deflection W turned out to be the same in all the layers. The resolvent equations of statics are 

aleX ~ (Dj)u - ~)l~X~ (D2) grad W + T a = 0 
2 2 -a~x~(D2)u  +~)~x~(D3)grad W = T 

Ta = £ - t ( ~  _Xa) ' T=ff+ - O -  + t  -t div(z+'r + - z - ' r - )  

O = u(x) -zgradW, W= w(x) 

a~=X.#r,)(u-zgradw), (Q~, M~o)=Z *{ (l,z)o~dz 
J zj+! 

zj+t 
= X I a~az = a~M.p + ~-' (z*~ + - z-%); a, p = l, 2 

J zj 
tPrikl. Mat. Mekh. Vol. 59, No. 4, pp. 642-651, 1995. 

(1.2) 

(1.3) 
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= , r ~  = 0~(1 +/i~+,) (1.4) 
D3 Ict~ ct~ = 1 I, 12,22 

Xll(F)= it(Yn0t +¥1602)+i2(~'!63, +YI202) (1 ~ 2) 

XJ2 (F) = i, (y1681 + y6602 ) + i 2 (y6601 +'/2602 ) 

D. / y  zk ')Fj D=ID' D t 
= k  ) ( / + j - z j  , D2 D3 

where oJa, e,a are the stresses and strains, Q~, M ~  are the stress resultants and moments in the 
pl.ate cros'~-sec-tion (~+1 is the Kroneeker delta) and Q~ is the shear stress resultant. The quantities 
T~ define the mean stiffnesses in the jth layer, Go is the principal minor of the stiffness matrix G 
and G~'is the minor obtained by adding thepth row and qth column to Go in the na.tural, order (choosing 
the minus sign whenpq = 16.26). The cumbersome expressions for the stresses o~ ,  o~ are not written 
o u t .  

The asymptotic error of formulae (1.2)-(1.4) comprises O(e) for the case of general anisotropy and 
O(e 2) for layers with local longitudinal planes of symmetry of the elastic properties. 

Note that the error estimate is independent of the stacking and holds even for a single-ply plate. 

2. The main difference compared with classical Kirchhoff-Love plate theory is that, besides membrane 
stiffnesses (D1) and bending stiffnesses (D3), there are also membrane-bending stiff~esses D2 # 0. The 
processes of bending and extension--compression-shear turn out to be coupled. The minimization of 
this coupling and the optimal placing of the reference system with respect to thickness were studied in 
[1,2]. 

We shall prove that, as far as the basic properties are concerned, continuity is maintained relative 
to the classical case. Some of them are obvious from physical considerations, but deserve special 
formulation. 

Theo/em 1. The generalized stiffness matrices Fj of the layers are positive-definite. 
That the principal minors of the matrix Fj are positive follows from the following considerations: 
1. All the principal minors of the initial matrix G are positive. 
2.  + P The quantities -Gff are equal to the values of the bordered minors, obtained by adding the pth 

row and qth column to Go below and to the right. 
3. The bordered minors satisfy Sylvester's identity [4]: i fM = [ ai/[~', n > m ~ 1, n ~> 2, is a principal 

minor of the matrixA = [ ai/1~ and b/a is the bordered minor obtained by adding to M the kth row and 
lth eolumn~ then the determinant of the matrix of bordered minors B = ] bla 1~+1 satisfies the equality 
B = Mn-t'-~A. 

Theorem 2. The energy density in each layer and the specific elastic energy 17 of the plate as a whole 
are positive-definite 

n=' l (2.1) 

m m  This follows from Theorem 1, the equalities (o11, o12, o22)i - Fi(e11, El2, g-,22) m = and (1.4). 
As a corollary, we obtain the following. 

Theorem 3. The complete stiffness matrix D, bending stiffness matrix D3 and membrane stiffiless matrix 
Di are positive-definite. 

Theorem 4. The energy balance relation holds for the statics of the plate 

F! = I Taua + TwdI2+ ~ Qn u, +Qxu, + MnO n + Pnwdx (2.2) 
tl ~tl 
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P. = Q,~ + ~).~M.~, O. = -c3.w 

where n and x are the vectors of the outward normal and tangent to the contour 0~. 
To prove this, multiply Eqs (1.2) by the displacements ua and w and integrate over the volume 

t~ [z, z+], applying tlhe Stokes and Gauss formulae. 

Theorem 5. Suppose that the contour Of~ is divided into segments Of~ = UkLk ,  on each of which a 
condition of following type holds 

(1) un*, u*, 0", w*; (2) Q*, Q~, M*~, P*; (3) mixed combinations (2.3) 

Then the SSS of the plate is uniquely defined. 
Indeed, the difference between any two solutions will have energy I-I = 0, so that eal~ = 0al~ = 0. 
Asymptotic analysis of the boundary conditions and the interaction of the boundary layer with the 

internal SSS for laminated plates is an extremely complicated problem. Nevertheless, it is well known 
from the example of single-ply plates [5-7] that the natural Kirchhoff boundary conditions hold to within 
an error O(e). In laminated plates a modification of the boundary conditions is required if the following 
situation arises [8]: 

1. the distribution of the boundary loads with respect to thickness is strongly non-uniform; 
2. the properties of the layers are considerably different, to the extent that new small (large) 

• + 1  parameters commensurate with e-  may appear. 
In the case of "s~aooth" distributions and comparatively homogeneous properties of the layers, one 

can confine one's attention to conditions (2.3). 

3. We will now present the solution of a boundary-value problem for a clamped plate in the shape 
of a finite ellipse 

3fl:f(x)--- (xl l a l )  2 +(x 2/a2) 2 -1 =0 

u , = u ~ = w ' = O ,  0~,=0 

when the given loads on the lateral surfaces are represented by homogeneous polynomials T~(x), 
7"-1(x). Set ua = ~x) f (x ) ,  w = a~m-l(x)f2(x), where a) m ~,n-1 are also homogeneous polynomials inxl 
and x2 of degrees m and m - 1, respectively. The displacements satisfy the boundary conditions identically 
and contain 2(m + 1) + m --- 3m + 2 undetermined constants---the coefficients of the powers o f x a  in 
the polynomials. Substituting into Eqs (1.2) and collecting like terms we obtain a linear system of 
equations of order 3m + 2 for the coefficients. That the system is non-singular follows from Theorem 
5. In particular, putting Ta = const, T = 0, we get w = 0, ul = ((a11T1 - a12T2)/(alla22 - a~2))f(x) 
(1 <---) 2)  i[~aa[ ~ - -  ~13Xctl~(nl)(f, f )  m. 

This result also ,.fields a number of particular solutions when the lateral load is the same but the 
boundary conditions on the contour of the ellipse are different. 

4. We will now propose a general method for solving boundary-value problems (2.3), on the 
assumption that there are no front loads. 

Theorem 6. The symbols of the differential operator of system (1.2), as well as its "bending" and 
"membrane" components, are elliptic. 

The main idea of the proof is as follows: take the Fourier transformation of Eqs (1.2) 

(u a, w} = ~ 2 x  H (Va, V)eiSXdx~dx2, s = ias a 

L(01 , 22 )(u I , u 2, w) = 0 ~ L(is  1 , is 2 )(V l , V 2, V) = 0 

Apart from signs and the replacement of Va by +-iVa, the symbolic equation will be equivalent to the 
equality L(s 1, s2)(Vl, I:2, V)e ~x = 0. The SSS of the plate determined by displacements (ua, w) = (ca, C)e s~ 
has energy 

rl = (q, c 2, c) l L( s~ , s2)e2nd~(q, c2, c) m ;" 0 
t'l 



618 D.D.  Zakharov 

with equality at zero displacements only. Consequently, L($1, $2) ¢ 0, L(is 1, is 2) #: 0 for s ~ e R. As a 
special case we conclude that the bending and membrane components of the operator are elliptic. 

It follows that the eigenvalues of the operator as a whole, and also of its "classicar' components, must 
be complex numbers. 

The general solution will be sought in the form ua = ua(sx), w = w(sx). To fix our ideas, let us assume 
that s 1 = 1, s 2 = ~., retaining both sets of  notation for convenience. It follows from Eqs (1.2) that 

H pl, u:'iu 

--P13 -P23  P33 ] wIV 

il3pct[~ = e-SX013Xal3(Di )e sx 

Pa3 = e-SX313X~ (D2) grad esx 

P33 = e-sx~Xal3 (D3)grad e sx 

P = P0P33 - P22Pl 2 - Pl IP223 + 2p12P23P31 

P~ = Pl3P22 - P12P23 
Po = PlJP22 -p22 (1 ~--~ 2) 

(4.1) 

The fourth-degree characteristic polynomials P33 and P0 correspond to the bending and membrane 
operators, respectively; the eight-degree polynomialp corresponds to the total operator. The roots of 
the equationp = 0 fall into four conjugate pairs; we shall assume throughout that st # sin. The structure 
of the displacements, stresses and moments is as follows (summation over the subscripts k = 1, 2, 3, 4 
only) 

u~ =2Re{X~oo (s, )¥~, (;k )} + l)° (x), w=2Re{T'Vt(;,)} (4.2) 

p(s t)--O, ~t =s ix ,  Imkt > 0  

~ 3  -- 2 Re{~.,q,.3 (s t )Wt"f;t )}; 0 o Q~,  M~(U I , u 2) = const 

sl s2 ql, _ q,2 _ q22 p-m,, + 2m,  =o, - (, ,)  

(4.3) 

(4.4) 

ql3 q23 (4.5) 
7 - - - 7 '  

where qtzl3(sk) and mat3(sk) are rational functions of the eigenvalues of the operator (1.2); ~°a(x) are linear 
functions ofxl  and x2. 

We shall now show how to set up the main boundary-value problems (2.3). 

First boundary-valueproblem. Suppose we are given the displacements on the contour ~f~. Then the 
functions V'k(~) satisfy the equations 

2 Re{Y-~-o (s t )¥~ (~t)} = Ua-~°a(x) 

2 Re{Et~¥~ ( ; t )}  = -0~ (4.6) 

u a =naU n -n l lu  r (u a ~L-*0a), net ='l'dxltld'r, (0t1~=12,21) 

Second boundary-value problem. The  stresses and moments (2.3) on Of~ are conveniently integrated 
over an arc (0", t) C Of 2 (the initial point is chosen arbitrarily). Using (4.4) and (4.5) and proceeding 
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exactly as in [9, 10] :for anisotropic single-ply plates, we obtain the following relations (no summation 
over repeated indicA,'s otct) 

2 RelX q-~(st)¥~ (~t , t  = 4-i ~ d t - ~ x p + Q ° t x x a + c a  
1 s~ J o 

I! o 2 R e  Y- (St)W~(~k) =4- Mad~-M~xf~+M°12xa+cxa+ca+2 
2 

t 

F," -- I P*n a~, c, ..... c4,c =const 
0 

(4.7) 

Note that the integrals on the right of formulae (4.7) depend only on the initial and final point of 
the contour, since equalities (4.4) and (4.5) lead to expressions for the total differentials. 

5. Equations (4.6) and (4.7) reduce the boundary-value problems to a typical problem of complex 
analysis: given the real parts of certain expressions on the boundary ~fl, it is required to determine the 
function q~(~) inside the domain. On changing to the complex variable ~ = xl + X~.x2, the functions 
Yk(~) may become multivalued--an inadmissible situation for physically meaningful quantifies. Letting 
Ak, A'k . . . .  denote the increments of the functions Yk(~), ~k(~)  . . . .  at a given pointx, with the contour 
described in the positive sense, we obtain exactly 20 conditions for single-valuedness 

w: 2RelXAt} = 0 

M3:2Y-Re{ (sqk~-(stc)(A t -~kA~)}+.,~.3 =O 

Ma.2];Re --~-- (st)At - --~-- (st)xttA =0  
l °k °k 

(5.a) 

(5.2) 

" t st J " 

(5.3) 

Qa3: 2Re{Y-'qa3(st)At'] =0  (5.4) 

where 3;0, ~3 and ~ ,  At 3 denote the projections of the principal vector and principal moment of the 
boundary load on the coordinate axes; 0~al~ = Ol3U~ - ~13 denotes the rotation of the plate in the 
longitudinal plane. Additional single-valuedness conditions, for the stress resultants and moments Q~p 
and M~,  are not needed, because of equalities (1.4). In a multiply-connected domain, conditions 
(5.1)-(5.4) are set up for each contour; in addition, the boundary loads on the holes and the external 
contour must balance one another, and the displacements, angles of rotation, strains and curvatures 
must be single-valued. 
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6. For each non-self-balanced load at the contour of a hole, let us choose a certain point x0: ~o = 
s~x0 (inside the hole). The multivalued terms are found as 

~pk (r~) = (~ A ~  2 + Br~ + C)In(r,~ - r~ °) 

A~"=O, A'~" = 2niA, A'~ = 2~iB+~,A'~' (6.1) 

A~ = 2~/C+~kA~ - ~ 2 A ~ ' ;  A,B,C=cons t  

The  constants A and B are de te rmined  f rom Eqs (5.2) and (5.3) and the quantit ies C are found 
simultaneously f rom equalities (5.1) and (4.6) or  (4.7). 

7. We will now demonstrate the solution of boundary-value problems for a finite ellipse and a plate with an elliptic 
cutout. We expand the boundary conditions in Fourier series in terms of the angular coordinate ~p. The right-hand 
sides of the equations are (the coeftieients with subscripts --. 1 form conjugate pairs) 

xl=alcoscp, x2=a2sin~p, nl=a2P-~COSq~, n2=alp-~sin~p 

p--(a2sin2~o+a22cos2~p) ~ ,  dx=pd~p 

u~ = ~. ut.ae a~#, -O~ = ~ wl.ae u¢ (7.1) 
_ ~  _ o o  

0~d~ = l~{a 2 (Wl, 2 + W_l, 2 )+/a I (Wl, I - W_l, I )} (7.2) 

t • i t~ (7.3) +~ (~d'¢= :i::~a.~==~ + ~. qt,ae 
0 2~lg _** 

d~3 = -g{ial (qi,2 - q-l,2 ) - a2 (ql,I + q-l,I )} (7.4) 

t 

-44"I = ~{al (ml 4- m_ I ) + a 2 (~ + f-I )} (7.6) 

• /I£2 = ilt{a2 (ml - m-l ) + al (J~ + f-I )} 

M: = P: = 

We shall assume that At -- 0, ~ --- 0. The variables ~ yield affine transformations of the initial domain f2, under 
which the ellipse ~ changes to a new ellipse ~ (f~ ---> £2k). 

We will first consider an infinite plate with a cutout. The required functions are expressed in terms of conformal 
mappings ~ - l (~ )  of the exteriors of the ellipses f2k onto the unit disk [10-13] (choosing the principal branch of 
the radical) 

TIk=a~k_i+x~kk 2 , ~k=(~k2-e2) ~ ,  2~k=(al-i~.ka2)~k+(al+i~.ka2)~k I 

~t2: ~k =ei~, ~ =i(alsin~p+3"ka2¢°s~P) 

ek = (a 2 + ~2a2 )~ bk = (a I + i~.ka2 )(al _ i~.ka2 )-I 

~/t~(~k) = const+~/0.k~k +l/2(a I _i~.ka2){¥1.k Inrlk 4-¥2,k11~ I +~, (bk¥1_l, k - ¥/+l,k)(/~/) -I } (7.7) 
2 

• 
o o 

W'/ = - g i  I ~. t~t .kni  t, vt.k = const 
I 

In the first (second) boun.d.ary-value problem, Eqs (4.6) ((4.7)) reduce to a linear system of equations of order 
8 for the coefficients of e -+a~, with unknowns Re Wt, k; Im Yt, k; k = 1 , . . . ,  4. The matrix of the system is 
independent of I and is non-singular by virtue of Theorem 6. When I >I 2 the coefficients are uniquely defined and 
it follows from the absolute and uniform convergence of the Fourier series for the boundary conditions that the 



Problems of statics for thin elastic asymmetrically-laminated anisotropic plates 621 

series (7.7) also converge absolutely and uniformly [10]. When I = 1 one needs more information about the form 
of the functions ~°(x). It follows from the condition ¢~, 0~ --~ 0, [ x I ~ ~ that ~°a = - ¢02tx~, ft)21 ---- c e n s t  E R;  

0 

First boundary-val~ problem. The eight equations (4.6) contain nine unknowns Re W1, ~, Im W1, ~ and ¢021. Of 
the two additional single-valuedness equations (5.1), the first is not independent by condition (7.2) an drops out. 
The remaining system of equations yields two unknowns. When I = 0 we obtain just four equations (4.6) and the 
coefficients ¥~ remairi undetermined. However, physical meaning can only be attached to the linear combinations 
of these coefficients corresponding to translational shear in the longitudinal plane and rotation of the plate as a 
rigid body about the xl, x2 axes. These components are determined from the equalities 

2 Re{~-00 (st)¥0,t } = uo.~; wo+2Re{,Y~,¥o.t}=Wo+Xo~Wo,o~ 

,,,, = w0 - I o~<d~<< (7 .8)  
(0./) 

Translational shear along the vertical is found from the given values of the deflection at the points of the contour 
( 0 - ,  t) c ~ .  

Second boundary-valueproblern. When I = 1 we obtain eight equations (4.7) and two equations (5.1), of which 
the second is dependent because of (7.4), At 3 = 0 and the singie-valuedness of the longitudinal stresses. The final 
result comprises the unknowns Re W1, k, Im W1, ~; c ¢ R. The quantities ¥0, ~, ¢a21 and w0 remain undetermined. 

8. Non-self-balanced loads may be dealt with using formulae (6.1). To avoid the need to correct the 
previous arguments, it is more convenient to replace the logarithmic function as follows: 

~Fk (~t) = ~ At {(24 2 - e2)In Tlk + ~t~k } +/it {~t In 11 t - ~t } (8.1) 

A t - O ,  A t f 2 ~ i A  t, A t=2~iB  t + ~ t A t  

A t = ~i(a I - i~ta2)vi , t  +~tA~ + J~(2~ _ %2)a t . . . .  

The coefficients Ak and Ba are determined in similar fashion. 

9. In the limit of an infinitely narrow ellipse we obtain solutions of boundary-value problems for a 
finite cutout - a t  ~< :q ~< al,x2 = 0 in an infinite plate. The previous systems of equations are considerably 
simplified. We proceed now to an "averaged" analogue of the singular problem, which may be understood 
as an asymptotic limit' of the internal SSS as a2 -~ +0, h/a2 -> +0. One corollary of formulae.(4.2) 
and (.7.7) is that the stress restfl, tants and moments Q ~  and M,~ (and the stress components o4~.) at 
the tip of the cutout have a typical smgularay of order r -~/2, where r is the distance to the final point 

xi ffiaicosl+rcoslX , x2 fa2sinq~+rsing, O ~ I X ~ 2 ~  

~k = {:k2alr(c°slx - ~'k sin Ix) + O(a~) + O(r 2)}'~, qo = O, 

WT(~t) - ~ l  ffi O(r-pj), ~ _ r-)~fo~Ot) 

At other points the functions are regular. Averaging of the quantities o j o j and stress resultants Q~  
considerably distol~ their asymptotic behaviour as r --> 0. 

The treatment for a rigid inclusion is entirely analogous. 

10. The interior of an ellipse with boundary ~fl and cut (-ek, ek) may be transformed into an annulus 
by a mapping TIk(~)k): [bkl ~< IThl ~< 1 [11]. The unknown functions are defined by a Lament  series, 
assuming that At =: 0, 9; = 0 

Yt (~t) = const+ ¥0.t~t + ~ {Wl,k~ 2 + (al - i~ka2) × 

. ,1,:, ]} 
1+1 l - I  
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vl  --v0., + v.. ,; ,  Yt.ktn  +(t, 
2 

v ; ;  = +  t.,l'qt, _ ( b d l - , ' ) t ]  
2 

It is obvious that the structure of the potentials ~F'k(~) coincides exactly with the solution of S. G. 
Lekhnitskii (expansion in Faber polynomials) and P. E Kufarev for a single-ply elliptical plate. 

We again obtain eight linear equations (4.6) or (4.7) for the coefficients Re 9t, k and Im Yt, k. When 
l ~> 2 the required quantities are uniquely defined; the fact that the system is non-singular follows from 
Theorem 6. 

Note that in the limit of (l --> o., bk t --> 0) the matrix of the system of equations is identical with the 
matrix for the problem of a plate with a cutout. Thus it follows from the absolute and uniform 
convergence of the Fourier series for the boundary conditions that the Laurent series are also absolutely 
and uniformly convergent. 

Another observation is that the cutout (--eg, ek) was made for formal convenience, but the final expres- 
sions do not involve any odd-ordered radicals and the points of the cutout are identified. Since the single- 
valued functions Yk(~) contain quadratic trinomial, we can set u°(x) = 0, Q°at 3 -- 0, Q~,  M°~ = 0. This 
is a general property of the representations (4.2); it is easy to show that, due to the quadratic components, 
there is an adequate degree of arbitrariness and the omitted terms become superfluous. 

First boundary-va lueprob lem.  If l = 1, one of the eight equations (4.6) is the first condition of (7.2). 
If l = 0, only four equations (4.6) remain. One cannot determine the coefficients V1, / themselves, but 
only some of their linear combinations these, together with condition (7.8), yield the linear components 
of the longitudinal displacements and quadratic components of the deflection 

% = (ul .~ + u_,.~)xla~ I + itul.~ - u_l.~)x2a~ j + Uo.~ 

2 w  = i(wl. ~ - W_l, ~ )x2a~x I + [ i(wl,  I - W IoI )a21 + (Wl, 2 + W_l,2 ) a / I  ]XlX 2 + 2(xctwo,ot + Wo) 

S e c o n d  boundary-va lueprob lem.  T h e  quantities Re lq/1,k, Im ¥1,k and c (l = 1) are to be determined 
from eight equations (4.7), but one of the latter is dependent because of condition (7.4) and the fact 
that ~t3 = 0. The required constants remain undetermined, but one can find all the appropriate (constant) 
components of the stress resultants and moments Q ~  and M~; the strain and curvature components 
are determined from (1.4). The other coefficients and the components of the translational shears and 
rotation of the plate as a rigid whole are obviously unknown. 

11. To end this paper we will formulate a general result that yields exact solutions for domains that 
can be mapped conformally, onto a circle. Denote the coefficients of the functions ¥~(~)  in Eqs (4.6) 
or (4.7) by ark, B = II ark II -1 (singularity of the matrix would imply that the solution of the previous 
problem--a plate with a cutout--was not unique). Let H ° (l = 1 , . . . ,  4) be the right-hand sides of 
Eqs (4.6) or (4.7). 

Theorem 7. Suppose that the following conditions hold: 
1. a set of conformal mappings of the domains f~k onto the unit circle K1 exists; 
2. the external loads are self-balanced and the functions {P'k(~) are single-valued; 
3. the boundary conditions are stated in terms of infinitely smooth functions. 
Then the unknown functions are 

4 " et~+~k(~k)-- .4 
= !---2~ ~ b, tn;(e '°) ------z--.. aq~+,2,  bktrt 

¥'i(~,) 41t ~ t=l ei~-qk(~k) t--t 

nk:~k --'> K l = {pe i'p, p~> I}, Kt:K t "'>~k, H°(x)l~ta = H°(Kk(ei¢')) = 1-17 

where r = {rl} is a vector of arbitrary real constants. 
The proof follows from Schwartz's formula (the determination of an analytic function in a circle given 

its real part on the circumference). By Riemann's theorem, the aforementioned conformal mappings 
always exist if the initial domain ~ is simply connected and has a smooth boundary [14]. 

The question of the effective construction of such mappings for any domain flk remains an open one; 
this cannot be done even for a finite ellipse, and use is made of Faber polynomials. 
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12. The method proposed above is no different in its underlying idea from the Kolosov- 
Muskhelishvili-Lel~nitskii method of classical complex potentials. However, the potential is defined 
directly for the disrdacements (without an analogue of the Airy function), and the problem of coupled 
bending-extension-compression-shear of a plate is of total dimension unlike the separate classical 
consideration. The determination of the constants of integration is somewhat different. In all other 
respects the methods are analogous; down to preservation of the structure of the potentials in the same 
form as in the corresponding two-dimensional or bending problems. One can thus make effective use 
of the available stock of solutions. 

This work was carded out with the financial support of the International Science Foundation 
(M7XO00). 
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